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Finite-Difference Analysis of a Loaded
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Abstract—A rotationally symmetric inhomogeneously loaded
open hemispherical resonator is analyzed using the finite-dif-
ference (FD) frequency-domain method. State-of-the art or new
techniques are proposed to achieve high accuracy and efficiency
of computations. These include applying the Galerkin method
followed by an inexact shift-and-inverse Lanczos technique with
an approximate starting eigenvector for selective computation of
a single desired high-order mode, and compensating numerical
dispersion error with the modified FD formulas. As a result, the
final value of the computed resonant frequency for a desired mode
agrees within 0.1% with the measured value and the computations
involving a few 100 000 unknowns are carried out in minutes on
a personal computer.

Index Terms—Finite difference frequency domain (FDFD),
hemispherical resonator.

I. MOTIVATION

I NTENSIVE research in material science generates a
growing need for efficient low-cost characterization and

design of new media. One of widely applied characterization
techniques is based on investigating the resonances excited
(in the millimeter-wave frequency range) in open hemispher-
ical resonators with insertions being the investigated media
[1]–[3]. The high costs associated with expensive fabrication
of advanced materials and repetitive measurements of different
sample designs can be reduced if one were able to accurately
and efficiently model or analyze such resonators. However,
the existing analysis of hemispherical resonators, based on
paraxial wave propagation approximation [4], does not allow
one to study effects such as finite sample size, diffraction
on mirror edges, nonideal mirror shape or coupling aperture.
Moreover, the formulas relating the resonant frequencies
with media parameters are valid only for a thin single-layer
material samples. Clearly, this severely limits application of
this simplified approach in practical situations.

Consequently, a proper description of field effects taking
place in a hemispherical resonator with inhomogeneous inser-
tions requires full-wave numerical modeling. Due to the large
size of the cavity, this is an extremely difficult computational
task if high accuracy is to be maintained. To the best of our
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Fig. 1. Hemispherical resonator loaded with a thin sapphire disc.L is the
length of the resonator,R is the radius of curvature of the spherical mirror,r

is the radius of the sapphire disc,t is the thickness of the disc, andt is the
distance between the disc and planar mirror.

knowledge, the only attempts thus far were based on the
three-dimensional (3-D) boundary-element method (BEM) [5]
and the staircased 3-D finite difference time domain (FDTD)
[3]. Both methods are computationally intensive and the stair-
casing used in the FDTD introduces unacceptable errors. In
the following sections, we present a low-cost approach toward
modeling the discussed system, which effectively deals with
the problems of the previously proposed algorithms.

II. HIGH-ACCURACY NUMERICAL MODELING

A typical resonator (cf. Fig. 1) is long, where
, and has at least in diameter, where is

the length of the wave in vacuum. For a structure of this size, a
large matrix eigenvalue problem has to be solved in order to find
field modes and corresponding resonant frequencies, and nu-
merical dispersion may introduce unacceptable errors into com-
puter simulations (e.g., [6]).

Moreover, the mode of interest is relatively high (e.g.,
quasi- in the Gaussian beam notation), which
means that one has to find eigenvalues located far from either of
the spectrum ends. To overcome these difficulties, we applied
the strategy summarized in the following points.

• First, the resonator was analyzed using an approximate
method based on paraxial approximation and the Galerkin
procedure (cf. Section III) in order to find a starting vector
for a full-wave numerical solver.

• Using the rotational symmetry, the 3-D frequency-domain
problem was expressed in cylindrical coordinates and
reduced to two dimensions with three field components.
Curved mirrors were modeled by means of conformal
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technique of [7] and an effective permittivity concept
was applied to dielectric boundaries [8]. The constructed
wave equation was discretized using Yee’s mesh and
modified formulas accounting for numerical dispersion.
As a result, a standard symmetrical eigenvalue problem
was obtained with being an eigenvalue (whereis an
unknown angular frequency) [9].

• An inexact shift and invert Lanczos (ISIL) procedure [10]
with a previously computed starting vector was used to
solve the full-wave eigenproblem.

In the following sections, we explain our strategy in more
detail.

III. A PPROXIMATEANALYSIS OF A LOADED RESONATOR

A starting point in our analysis are modes of an empty res-
onator. For this configuration, the solution can be found in ana-
lytical form. Let us consider the wave equation for the electric
field

(1)

Assuming

(2)

(1) becomes

(3)

For a slowly varying envelope (paraxial approximation), i.e., if

(4)

the wave equation reduces to

(5)

The solutions to the above equation can be found in an analyt-
ical form [11]. One series of such solutions are modes,
which correspond to resonances of a Gaussian beam. The res-
onant frequencies of these modes can be found by considering
the general solution of the paraxial wave equation in the cylin-
drical coordinate system. Assuming no variation in the angular
direction, is expressed by

(6)

where is the beam radius,
, is the constant phase ra-

dius, is the phase difference between the
plane wave and the Gaussian beam, is the
Rayleigh length, is the amplitude of the field, and finally,
is the wavelength. The resonant frequencies for modes

in the hemispherical resonator having lengthand the radius of
curvature of the upper mirror are then given by

(7)

with being the velocity of light in vacuum.
In order to find an approximate resonant frequency and modal

field distribution for a resonator loaded with an inhomogeneous
sample, we use the Galerkin method with the modes of an empty
resonator used both as a set of basis and testing functions. Let us
assume that the sample is homogeneous in both the- and -di-
rections and the-component of the field is small compared
to the - and -components. In such a case, the wave equation
for the component can be written as

(8)

We may now express the field in a loaded resonator in terms of
only modes of an empty resonator derived under the
paraxial solution approximation. Let us denote by primes the
quantities found using analytical formulas for the unloaded res-
onator. The electric field in the loaded structure is approxi-
mated by

(9)

where are the unknown expansion coefficients and

(10)

with denoting the wavenumber at theth resonance. The ex-
pansion functions are not only exact solutions of the paraxial
wave equation, but they are also approximate eigenfunctions of
the operator. This implies that each expansion function sat-
isfies (even though approximately) the Helmholtz equation

(11)

Likewise, we may assume that the approximate eigenfunctions
are orthogonal, i.e.,

if

if
(12)

with being normalization constants. (Although, in fact, the
inner product of two different approximate eigenfunctions is not
exactly zero.) Substitution of (9) into (8) and then (11) into the
resulting equation yields

(13)

Taking the inner product of the above equation with each expan-
sion function gives the following set of equations:

(14)
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This can be expressed in a matrix form as a generalized eigen-
value problem

(15)

Assuming (11) and (12) hold, the left-hand-side matrix becomes
simply

...

...
...

.. .

This diagonal matrix can be inverted analytically and, hence,
the approximate spectrum of the loaded resonator is found by
solving the following standard matrix eigenvalue problem:

(16)

with the eigenvalues related to resonant frequencies
by

(17)

It has to be noted that the derivation presented above in-
cluded a number of assumptions, such as the lack of coupling
between field components and treating each paraxial mode as an
eigenfunction of the wave equation. These assumptions, while
limit the accuracy of the method-of-moments solution, readily
yield an approximate resonant frequency and the corresponding
modal field distribution, giving an excellent starting point to a
much more accurate full-wave analysis described in Section IV.

IV. FULL-WAVE FINITE-DIFFERENCE(FD) SOLUTION

A. Discretization and Normalization of Fields

In order to describe the field behavior in the resonator in the
form that is amenable to numerical treatment, we consider the
FD approximation to Maxwell’s equations in cylindrical co-
ordinates. Since the resonator is assumed to have cylindrical
symmetry, the angular dependence of each field component is
known and, for the mode with angular number, is expressed
by either or . This implies that, in order to
find the quasi- modes of the hemispherical resonator,
it is enough to consider Maxwell’s equations for in
the space. To derive the eigenvalue problem, the
plane is covered with Yee’s mesh and the derivatives with re-
spect to and are replaced by the modified FD formulas (see
Section IV-B for the details). Apart from this modification, in-
troduced to mitigate the effect of numerical dispersion, there
are two other points pertaining to discretization that we want
to underline. First, following [12], we discretize and
rather than and components. Second, once the Maxwell
equations have been discretized, the electric and magnetic fields
are normalized by multiplying each component of the electric
field by and each component of the magnetic field by ,
where ( ) are the discretized values of the permittivity (per-
meability) associated with the given grid points and field com-

ponents [13]. The purpose of these two operations is to obtain
a discrete wave equation in the form of a standard symmetric
matrix eigenvalue problem.

It has to be noted that the applied grid does not have to con-
form to either boundaries between dielectrics or to the curved
upper mirror. Yee’s mesh allows one to account for the different
dielectric constants within a cell by computing the equivalent
permittivity [8] and the curved metals can be handled as in [7]
or [14].

Eliminating the magnetic field from the discretized
Maxwell’s equation yields the following matrix equivalent of
the curl–curl wave equation:

(18)

where the tilde indicates that the electric field is normalized.
The coefficient matrix is highly structured and sparse with
only 11 nonzero elements per row. Its spectrum consists of
the eigenvalues that correspond to the resonances, as well
as a large number of spurious modes that do not satisfy the
divergence equation. These spurious modes are clustered
around zero frequency and are a well-known problem of the
curl–curl formulation in the FD technique involving all three
electric- or magnetic-field components. A standard technique
to prevent the numerical solver from converging to a spurious
solution is by adding a scaled discrete grad–div operator to the
wave equation [13], which moves the spurious eigenvalues far
away from the origin. We take care of the spurious solutions by
using a suitably chosen iterative matrix eigenproblem solution
method, which allows us to converge on a single mode by using
an appropriate starting point.

B. Accounting for Numerical Dispersion

The FD approach used in our analysis implies that the solu-
tion will be affected by numerical dispersion. Accounting for
its effects is especially important while considering electrically
large resonators where the dispersion is one of the main sources
of error.

In order to reduce the error due to dispersion, one may refine
the FD mesh at a cost of increasing the size of the eigenproblem
to be solved, A different approach, which does not increase the
size of the numerical problem, is based on modifying the FD
scheme on Yee’s mesh. The idea [15] is based on replacing the
standard FD scheme operator

(19)

with a modified operator

(20)

where ( ) is a certain constant, is any of the compo-
nents of the electric or magnetic field, andis some spatial di-
rection. If we apply the modified FD scheme (20) and Yee’s
mesh in cylindrical coordinates to discretize Maxwell’s curl
equations and then substitute the waveforms of a homogeneous
TE cylindrical wave into these discretized equations, we will
obtain the dispersion relation in (21), shown at the bottom of
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this page, where and define grid parameters,denotes
the index for the discretization along thecoordinate, is an

th-order Bessel function, and and are wavenumbers in
the - and -directions, respectively. In the limit ( ,

), the above relation reduces to Bessel’s equation sat-
isfied if and only if . For a given mode, pro-
vided its resonant frequency is known, we may compute
and then use dispersion relation (21) to obtain the value of factor

such that the value of obtained from (21) will match the
theoretical value of the wavenumber . The
modified FD scheme will then eliminate the effects of numer-
ical dispersion for a given frequency.

The eigenfrequency of the mode (which we are looking for)
is unknown. To compute factor, we may use an approximate

, found by some less accurate scheme, e.g., with the approxi-
mate model described in Section III, or with a full-wave solver
and a standard FD scheme (19) on a coarse mesh. By using the
modified FD scheme (20), we will then greatly reduce the errors
associated with numerical dispersion.

In the case of a multilayered media, a different value of
can be found and applied for each medium. Also, if different
FD grids are used in different media, we may apply (21) to find
the corresponding values of’s.

C. Algorithm for Solving the Eigenvalue Problem

The matrix generated by the finite-difference frequency-do-
main (FDFD) technique is very large and the number of
eigenvalues matches the size of the matrix. Since we used the
curl–curl formulation, a large number of eigenvalues (clustered
around zero) corresponds to spurious solutions. Moreover, the
resonant frequency of interest is that of a relatively high-order
mode, which implies that we have to selectively compute an
eigenvalue that is located far from either end of the matrix’
spectrum. Computing such interior eigenvalues is one of the
most challenging task in the field of numerical linear algebra,
especially when the matrix is too large to be efficiently fac-
torized. A method that is capable of selective computation of
eigenvalues also eliminates the problem of spurious eigen-
values that are present in the FDFD techniques based on the
curl–curl formulation. In the past, we have proposed to use
the Arnoldi method with polynomial preconditioning [16].
The preconditioner was designed as a finite-impulse response

(FIR) filter whose center frequency was the approximate
target eigenvalue. With the FIR filter of sufficient length,
we were able to compute a few tens of modes and select the
correct one by inspecting the eigenvectors. Even with this
approach, reasonable solution times required parallelization of
the whole algorithm and special techniques had to be devised
to obtain scalability [17]. In this paper, we propose a much
more efficient approach, which not only obviates the need for
high-performance computing techniques, but also allows us
to converge on a single mode of interest. The algorithm we
propose is an adapted version of an ISIL method [10]. In a
regular shift-and-invert Lanczos strategy, a few eigenvalues
of an original eigenproblem located near a specified target
can be computed by an iterative Lanczos algorithm applied to
find the largest eigenvalues of the transformed problem

(22)

where is the identity matrix. This approach involves solving
a large system of equations to a good accuracy at each iteration
step. High accuracy is required to prevent the breakdown of the
Lanczos process. Due to the inherent ill conditioning of the ma-
trix , the shift-and-invert strategy becomes impractical
when the matrix size exceeds a few tens of thousands. The ISIL
algorithm solves the system approximately by means of an iter-
ative technique. In this method, the accuracy of the solution step
can be quite low, but the original Lanczos three-term recurrence
formula has to be modified by adding an explicit projection of
the eigenproblem on the Ritz vector space [10]. Below is the
version of the ISIL algorithm used in our computations.

ISIL
Input: , starting vector , target .
Output: eigenvalue closest to target ,
eigenvector .

Initialization: , , ,
, , , , ,
, , ;

for to
Solve approximately: ;
Set: , , , ;
for to

;

where (21)
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Set: ; ;
Compute: ; ; ;

; , ;
Make eigendecomposition of the
symmetric
matrix , select eigenvalue closest
to target and set:

, , ;
If converged then exit with and .

V. COMPUTATIONAL RESULTS

The technique described above has been applied to calculate
the resonant frequency of the quasi- mode in the
open hemispherical resonator containing a thin sapphire disc
of thickness mm and relative dielectric constant of

suspended at the heightabove the planar mirror (cf.
Fig. 1). The radius of curvature of the upper mirror equaled

mm and the height of the structure was mm.1

In order to limit the computational domain, the open resonator
was modeled as aclosed structure with sidewalls located suffi-
ciently far from the center of the resonator, where the field inten-
sity is negligibly small for the considered class of modes. Since
the sapphire disc is very thin compared to the resonator height
( ), the structure was covered with a mesh, which
was uniform in the -direction and nonuniform in the-direc-
tion. In the computations, it was assumed that the region close
to the planar mirror is covered with a 10denser mesh than
the remaining part of the structure. This implies that the dis-
persion properties for each mesh region are different. In order
to use the dispersion correction algorithm, in each mesh region
we used a different factor [cf. (20)]. To eliminate the reflec-
tion caused by mesh density mismatch, we placed the boundary
between the meshes at the plane where the magnitude of the

component is minimal. Since the location of this plane is
not knowna priori, we used the approximate field distribution
obtained from the Galerkin method to determine thecoor-
dinate for interfacing the meshes. The resonant frequencies of
the quasi- mode were computed for different dis-
tances between the disc and bottom planar mirror. They were
then compared to the values of resonant frequencies measured at
the Texas Center for Superconductivity, University of Houston,
Houston, TX. The results are shown in Fig. 2.

One may note that computed results exceed the measure-
ments by less than 0.1%. The results shown in this figure were
computed with the grid mm . (In the re-
gion close to the planar mirror, we applied a finer grid

.) For these grids, the problem size equaled
. The computations were carried out in MATLAB on

a 1-GHz Pentium III computer. The ISIL algorithm with the
starting vector calculated via the Galerkin method required only
approximately 25 min to converge. It proved to be much more
efficient than the Arnoldi method with polynomial precondi-
tioning that we used in the past [16]. With the latter algorithm,

1The length of the resonator was computed using analytical formulas for the
homogeneous (empty) resonator and values of measured resonant frequencies
for a few modes in that resonator.

Fig. 2. Resonant frequency of the quasi-TEM of a hemispherical
resonator loaded with a thin sapphire disc versus the distance between the
disc and bottom planar mirror. Computed results: solid line, measurements:
asterisks. The dashed–dotted lines define the�0.1% relative error threshold
with respect to the computed results.

TABLE I
CONVERGENCE OF THECOMPUTED RESONANT FREQUENCYf (t = 2 mm)
AND THE VALUES OF THEDISPERSIONCORRECTIONFACTORSA AND A

USED ON ACOARSERGRID (�z) AND THE FINER GRID (�z=10)

we had to resort to parallel computing to obtain results in an ac-
ceptable time [17].

To show the influence of gridding and the dispersion correc-
tion factors, we ran the convergence tests for mm. The
results are given in Table I. With modest computer resources, we
were able to easily solve problems with 874 350 unknowns. It is
seen that the calculations converge uniformly from above and, as
the grid is refined, the dispersion correction factors tend to one.
Based on the results calculated for several grids, we determined
that the order of convergence of the presented algorithm with
a dispersion correction equals approximately 2.6. This means
that the convergence is faster than in the standard FDFD method
since, if we switch off the dispersion correction, the order of the
method becomes 2.0, as predicted by the general theory and ob-
served in practice. We used the computed convergence order in
the Richardson extrapolation algorithm to determine the limit as

. This extrapolated value is shown in the last row in
Table I. The first row of this table shows the results calculated
for , i.e., without a dispersion correction. It can
easily be verified that, for the coarsest grid , the dis-
persion correction reduces the error relative to the extrapolated
result from 1.549% to 0.068%, i.e., by a factor of 23.



ĆWIKŁA et al.: FD ANALYSIS OF LOADED HEMISPHERICAL RESONATOR 1511

VI. CONCLUSIONS

In this paper, we have shown that rotationally symmetric in-
homogeneously loaded open hemispherical resonators could be
accurately and efficiently modeled using the FDFD method. A
very high accuracy of computations was achieved by coupling
a conventional FDFD approach with sophisticated numerical
techniques, including conformal analysis of boundaries or the
algorithm for correcting the error due to numerical dispersion.
Resonant frequencies of the desired high-order modes were
found by solving a very large-scale symmetric eigenproblem.
In order to reduce computational cost associated with solving
this problem, we proposed a strategy ofselective computation
of a single desired mode based on the: 1) approximate solution
with the Galerkin method and 2) application of the ISIL
iterative method. Excellent agreement of the computed results
with experimental data and short solution time were obtained.
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