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Abstract—A rotationally symmetric inhomogeneously loaded '
open hemispherical resonator is analyzed using the finite-dif-
ference (FD) frequency-domain method. State-of-the art or new
technigues are proposed to achieve high accuracy and efficiency
of computations. These include applying the Galerkin method
followed by an inexact shift-and-inverse Lanczos technique with
an approximate starting eigenvector for selective computation of
a single desired high-order mode, and compensating numerical
dispersion error with the modified FD formulas. As a result, the
final value of the computed resonant frequency for a desired mode
agrees within 0.1% with the measured value and the computations
involving a few 100000 unknowns are carried out in minutes on
a personal computer.

Index Terms—Finite difference frequency domain (FDFD),

hemispherical resonator. Fig. 1. Hemispherical resonator loaded with a thin sapphire disis the
length of the resonatoR? is the radius of curvature of the spherical mirror,
is the radius of the sapphire discijs the thickness of the disc, ang is the
. MOTIVATION distance between the disc and planar mirror.

I NTENSIVE research in material science generates a
growing need for efficient low-cost characterization anfowledge, the only attempts thus far were based on the

design of new media. One of widely applied characterizatidhrée-dimensional (3-D) boundary-element method (BEM) [5]

techniques is based on investigating the resonances excfi@d the staircased 3-D finite difference time domain (FDTD)

(in the millimeter-wave frequency range) in open hemisphe[é]' _Both methods are computatlonally intensive and the stair-
ical resonators with insertions being the investigated medi@sing used in the FDTD introduces unacceptable errors. In
[1]-[3]. The high costs associated with expensive fabricatidR following sections, we present a low-cost approach toward
of advanced materials and repetitive measurements of differ@itdeling the discussed system, which effectively deals with
sample designs can be reduced if one were able to accuraf8fyProblems of the previously proposed algorithms.

and efficiently model or analyze such resonators. However,
the existing analysis of hemispherical resonators, based on
paraxial wave propagation approximation [4], does not allow A typical resonator (cf. Fig. 1) i€ = ng - A long, where

one to study effects such as finite sample size, diffraction, > 50, and has at leag® = 10 - \ in diameter, wheré is

on mirror edges, nonideal mirror shape or coupling apertut@e length of the wave in vacuum. For a structure of this size, a
Moreover, the formulas relating the resonant frequenciggge matrix eigenvalue problem has to be solved in order to find
with media parameters are valid only for a thin single-laydield modes and corresponding resonant frequencies, and nu-
material samples. Clearly, this severely limits application @ferical dispersion may introduce unacceptable errors into com-
this simplified approach in practical situations. puter simulations (e.g., [6]).

Consequently, a proper description of field effects taking Moreover, the mode of interest is relatively high (e.g.,
place in a hemispherical resonator with inhomogeneous insgtrasiTEM, o 50 in the Gaussian beam notation), which
tions requires full-wave numerical modeling. Due to the larg@eans that one has to find eigenvalues located far from either of
size of the cavity, this is an extremely difficult computationathe spectrum ends. To overcome these difficulties, we applied
task if high accuracy is to be maintained. To the best of othe strategy summarized in the following points.

* First, the resonator was analyzed using an approximate
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(1)

technique of [7] and an effective permittivity conceptn the hemispherical resonator having lengitand the radius of
was applied to dielectric boundaries [8]. The constructaemirvature of the upper mirrak are then given by

wave equation was discretized using Yee's mesh and

modified formulas accounting for' num.erical dispersion. Foog = c g+ 1 ALCCOS < 1— L )

As a result, a standard symmetrical eigenvalue problem 2L 7r R

was obtained withb? being an eigenvalue (wheugis an ) ) o

unknown angular frequency) [9]. with ¢ being the velocity of _Ilght in vacuum.

« Aninexact shift and invert Lanczos (ISIL) procedure [10] In o'rde.r to ]‘md an approximate resonant frquency and modal
with a previously computed starting vector was used ggald distribution foraresor}ator Ioaded_wnh an inhomogeneous
solve the full-wave eigenproblem. sample, we use the Galerkin metho_d with the modes of an empty

In the following sections, we explain our strategy in moréesonatorused both as a_set of basis and t_estmg functlong. Letus
detail. assume that the sample is homogegeous in both-thedy-di-
rections and the-component of the¥ field is small compared
to thez- andy-components. In such a case, the wave equation
for the £, component can be written as
A starting point in our analysis are modes of an empty res-

I1l. A PPROXIMATE ANALYSIS OF A LOADED RESONATOR

onator. For this configuration, the solution can be found in ana- —V2E, = ke (2) B (8)
%’e“lgal form. Let us consider the wave equation for the eleCtr\RIe may now express the field in a loaded resonator in terms of
only TEMgo, modes of an empty resonator derived under the
V2E (2, y, 2) + K°E (x, y, 2) = 0. 1 parax!a_\l solution apprOX|mat_|on. Let us denote by primes the
@y, 2) + @y, 2) @ gquantities found using analytical formulas for the unloaded res-
Assuming onator. The electric field,. in the loaded structure is approxi-
mated by
E(];, Y, Z) = U,(J}, Y, Z) C_jkz (2) N
E, = anel, 9
(1) becomes nz::l ©)
Pu Pu H*u ., Ou wherea,, are the unknown expansion coefficients and
—2+—2+—2—2j/€—=0. (3)
dz dy dz dz 2 r2
e = o exp <_p_> sin |:/€/ z+ Foi” _ (2)
For a slowly varying envelope (paraxial approximation), i.e., if *  W(z) W2(2) 0" T 2R(2) i
(10)
8%u o du 4
922 < 9z @ with k{,; denoting the wavenumber at tfth resonance. The ex-
_ pansion functions are not only exact solutions of the paraxial
the wave equation reduces to wave equation, but they are also approximate eigenfunctions of
) ) the V2 operator. This implies that each expansion function sat-
Fu + Fu gjk% -0 (5) isfies (even though approximately) the Helmholtz equation
ox? = Oy? Oz
V2 =kitel. (11)

The solutions to the above equation can be found in an analyt-

ical form [11]. One series of such solutions 81fEM, modes, Likewise, we may assume that the approximate eigenfunctions
which correspond to resonances of a Gaussian beam. The ggs-orthogonal, i.e.,

onant frequencies of these modes can be found by considering N T,

the general solution of the paraxial wave equation in the cylin- (., ch) = { e - (12)
drical coordinate system. Assuming no variation in the angular 0, if k#n

direction,u(p, z) is expressed by with V,, being normalization constants. (Although, in fact, the
W 2 inner product of two different approximate eigenfunctions is not
u(p, z) = Ag—2 exp <—p—) exactly zero.) Substitution of (9) into (8) and then (11) into the

2
W(z) W2(z) , resulting equation yields

coxp (i = +ic)) 6) v v
i Z anki2 el = kle (2) Z anel,. (13)

whereW (2) = Wy [1 + (2/20)?] /2 is the beam radiusy, = =t =t

(A2o/m) 2, R(z) = 2 [1 + (ZO/Z)Q] is the constant phase ra-T_aking the_ inngr product of thg above equatiop with each expan-

dius,¢(z) = arctan(z/z) is the phase difference between thgion function gives the following set of equations:

plane wave and the Gaussian beam= /R(R — L) is the N N

Rayleigh length A, is the amplitude of the field, and finally, Z anki2 e b ) = k2 { en(z) Z and. d Y. (14)

is the wavelength. The resonant frequenciedBM,, modes —m — "
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This can be expressed in a matrix form as a generalized eigponents [13]. The purpose of these two operations is to obtain

value problem a discrete wave equation in the form of a standard symmetric
) matrix eigenvalue problem.

La = kyRa. (15) It has to be noted that the applied grid does not have to con-

form to either boundaries between dielectrics or to the curved

Assuming (11) and (12) hold, the left-hand-side matrix becomgrs)per mirror. Yee's mesh allows one to account for the different

simply dielectric constants within a cell by computing the equivalent
N1k 0 . 0 permittivity [8] and the curved metals can be handled as in [7]
) or [14].
0 MG ... : Eliminating the magnetic field from the discretized
L= ’ Maxwell's equation yields the following matrix equivalent of
. : 0 the curl—curl wave equation:
12
0 o0 NyEB, 25 = 2B 18)

This diagonal matrix can be inverted analytically and, hence,

the approximate spectrum of the loaded resonator is found Wiere the tilde indicates that the electric field is normalized.

solving the following standard matrix eigenvalue problem: The coefficient matrixZ is highly structured and sparse with
only 11 nonzero elements per row. Its spectrum consists of

L 'Ra = 6%a, (16) the eigenvalues that correspond to the resonances, as well
as a large number of spurious modes that do not satisfy the

. : NS :
with the eigenvalue§;’ = 1/kg; related to resonantfrequenmesdivergence equation. These spurious modes are clustered

fi by around zero frequency and are a well-known problem of the
_ curl—curl formulation in the FD technique involving all three
fi= cy/ é; /(27f)- (17)  electric- or magnetic-field components. A standard technique

to prevent the numerical solver from converging to a spurious

It has to be noted that the derivation presented above #blution is by adding a scaled discrete grad—div operator to the
cluded a number of assumptions, such as the lack of coupliRéive equation [13], which moves the spurious eigenvalues far
between field components and treating each paraxial mode ag@ay from the origin. We take care of the spurious solutions by
eigenfunction of the wave equation. These assumptions, Whii§ing a suitably chosen iterative matrix eigenproblem solution

limit the accuracy of the method-of-moments solution, readilyiethod, which allows us to converge on a single mode by using
yield an approximate resonant frequency and the correspondiigappropriate starting point.

modal field distribution, giving an excellent starting point to a
much more accurate full-wave analysis described in Section B. Accounting for Numerical Dispersion

The FD approach used in our analysis implies that the solu-
IV. FULL-WAVE FINITE-DIFFERENCE(FD) SOLUTION tion will be affected by numerical dispersion. Accounting for
A. Discretization and Normalization of Fields its effects is especially important while considering electrically
In order to describe the field behavior in the resonator in tﬁ rge resonators where the dispersion is one of the main sources

form that is amenable to numerical treatment, we consider Resrror. . . i

FD approximation to Maxwell's equations in cylindrical co- In order to reduce the error due to dispersion, one may refine
ordinates. Since the resonator is assumed to have cylindritct};\lFD mesh at a_cost of increasing thg size of the e_lgenproblem
symmetry, the angular dependence of each field componenﬁ e solved, A different approach, which does not increase the

known and, for the mode with angular numbey is expressed size of the numerical problem, s basgd on modifying thg FD
by eithercos (m) of sin (mg). This implies that, in order to scheme on Yee’'s mesh. The idea [15] is based on replacing the
' ’ rstandard FD scheme operator

find the quasi’EMqo, modes of the hemispherical resonator,

it is enough to consider Maxwell's equations fer = 1 in F(n+ An/2) — F(n — An/2)

the p — » space. To derive the eigenvalue problem, the = DF(n) = An (19)

plane is covered with Yee’'s mesh and the derivatives with re-

spect top andz are replaced by the modified FD formulas (seith @ modified operator

Section IV-B for the details). Apart from this modification, in- _ _

troduced to mitigate the effect of numerical dispersion, there DF(n) = AF(U i AU/Z)A F'(n = An/2)
. . . . n

are two other points pertaining to discretization that we want

to underline. First, following [12], we discretized4 andpE,; where A (#1) is a certain constantt” is any of the compo-

rather tharH,, and £, components. Second, once the Maxwelhents of the electric or magnetic field, ands some spatial di-

equations have been discretized, the electric and magnetic figlgistion. If we apply the modified FD scheme (20) and Yee's

are normalized by multiplying each component of the electrinesh in cylindrical coordinates to discretize Maxwell’s curl

field by \/¢; and each component of the magnetic fieldy;, equations and then substitute the waveforms of a homogeneous

wheree; (11;) are the discretized values of the permittivity (perTE cylindrical wave into these discretized equations, we will

meability) associated with the given grid points and field conebtain the dispersion relation in (21), shown at the bottom of

(20)
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this page, wheré\> and Ap define grid parameterd,denotes (FIR) filter whose center frequency was the approximate
the index for the discretization along theoordinate B,, is an target eigenvalue. With the FIR filter of sufficient length,
nth-order Bessel function, arg, andk. are wavenumbers in we were able to compute a few tens of modes and select the
the p- andz-directions, respectively. In the limitp, Az — 0, correct one by inspecting the eigenvectors. Even with this
IAp — p), the above relation reduces to Bessel's equation sapproach, reasonable solution times required parallelization of
isfied if and only if 2 + k2 = w?/c*. For a given mode, pro- the whole algorithm and special techniques had to be devised
vided its resonant frequeney is known, we may computg, to obtain scalability [17]. In this paper, we propose a much
and then use dispersion relation (21) to obtain the value of factoore efficient approach, which not only obviates the need for
A such that the value g%, obtained from (21) will match the high-performance computing techniques, but also allows us
theoretical value of the wavenumbler = , /(w/c)? — k% .The to converge on a single mode of interest. The algorithm we
modified FD scheme will then eliminate the effects of numeR"OPOSEe is an adapted version of an ISIL method [10]. In a
ical dispersion for a given frequenay. regular ;h_lft-an(_j-mvert Lanczos strategy, a few e_|genvaDues
The eigenfrequency of the mode (which we are looking for) of an original elgenprobllem chated near a spgcmed tamget
is unknown. To compute factot, we may use an approximatecan be computeq by an iterative Lanczos algorithm applied to
w, found by some less accurate scheme, e.g., with the apprdiid the largest eigenvalues of the transformed problem
mate model described in Section I, or with a full-wave solver (Aol 1. oy 22)
and a standard FD scheme (19) on a coarse mesh. By using the = = = =
modified FD scheme (20), we will then greatly reduce the errofghere is the identity matrix. This approach involves solving
associated with numerical dispersion. a large system of equations to a good accuracy at each iteration
In the case of a multilayered media, a different valuedof step. High accuracy is required to prevent the breakdown of the
can be found and applied for each medium. Also, if differentanczos process. Due to the inherent ill conditioning of the ma-
FD grids are used in different media, we may apply (21) to fingix A — o1, the shift-and-invert strategy becomes impractical

the corresponding values afs. when the matrix size exceeds a few tens of thousands. The ISIL
) ) ) algorithm solves the system approximately by means of an iter-
C. Algorithmfor Solving the Eigenvalue Problem ative technique. In this method, the accuracy of the solution step

The matrix generated by the finite-difference frequency-déan be quite low, but the original Lanczos three-term recurrence
main (FDFD) technique is very large and the number d®rmula has to be modified by adding an explicit projection of
eigenvalues matches the size of the matrix. Since we used the eigenproblem on the Ritz vector space [10]. Below is the
curl—curl formulation, a large number of eigenvalues (clustera@rsion of the ISIL algorithm used in our computations.
around zero) corresponds to spurious solutions. Moreover, the
resonant frequency of interest is that of a relatively high-ordeSI L (4, ¢, o)
mode, which implies that we have to selectively compute dmput: A, starting vector ¢, target o.
eigenvalue that is located far from either end of the matri¥ut put : ei genval ue X closest to target o,
spectrum. Computing such interior eigenvalues is one of theei genvector z.

most challenging task in the field of numerical linear algebrani tialization: ¢ = ¢/|lqll, a = Ag, t = ¢"a,

4
q,

[IN

s

[

B
[[<ny (

especially when the matrix is too large to be efficiently fac- A = ¢, r =a—Xq, Z = |q], ],
torized. A method that is capable of selective computation of 3, =0, ¢ =¢, v=¢
eigenvalues also eliminates the problem of spurious eigdrer j =1 to m
values that are present in the FDFD techniques based on th&ol ve approxi mately: (A - oljw =uv;
curl—curl formulation. In the past, we have proposed to useSet: w=w-f,q, a= wlv, w=w—ag, q, =4
the Arnoldi method with polynomial preconditioning [16]. for ¢i=1to (j — 1)
The preconditioner was designed as a finite-impulse response w = w — (w” Z(:, ¢))Z(:, 1);
2Asin(k.Az/2
o 0 0 0 2A4sin(k-Az2/2)
Az
2Asin(k.Az/2)
0 Wit 0 et Ml 0
Az
—nBn(a)  A[B,(MUI+D)-B,(6)]]
B n n =
0 0 wnBnl@) T Ape (I+1/2)Ar 0,
0 B 2Asin(k.Az/2) e 0
Az
! . 3 . —
_2ABn(k,,IAZ) sin(k,Az/2) 0 _ABn(Oc)A B,.(3) 0 weB! (k1 Ap)
z P

wherea = k,(I +1/2)Ap; =k, (I —-1/2)Ap; v=k,(I+1)Ap; 6=k, IAp (22)
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Set: B =lwlig=w/B B, =45 oo — T T e
Conpute: a=4dg t=¢"Z,; 7=¢"g az B o=
S=[8thto, Z=1[Z 4, Z,=12,,4l;

Make ei gendeconposition SU = UA of the 109

symetric o o '

matrix S, select eigenvalue X, closest 1088 4

to target o and set:
A= )\ki QIQ(:v k)' r= (ZA - )‘é)g(v k)!

If converged then exit with A and z.

108.6

f[GHz]

1084

V. COMPUTATIONAL RESULTS .
The technique described above has been applied to calcule
the resonant frequency of the quddizM,, o, 52 mode in the
open hemispherical resonator containing a thin sapphire dis "% 5z e e wfe‘d[mm]é 22 24 26 28
of thicknesst = 0.330 mm and relative dielectric constant of
e =94 SUSpended at the hei%tabove the planar mirror (Cf Fig. 2. Resonant frequency of the quadiM, , s» of a hemispherical
Fig. 1). The radius of curvature of the upper mirror equdted resonator loaded with a thin sapphire disc versus the distance between the
76.200 mm and the height o the structure whis= 71,855 mm.. 45 ¥ betors paner muie, Compued s <ol Ine, meseurients
In order to limit the computational domain, the open resonat@fih respect to the computed results.
was modeled as @osed structure with sidewalls located suffi-
ciently far from the center of the resonator, where the field inten- TABLE |
sity is negligibly small for the considered class of modes. Sincg°NVERGENCE OF THECOMPUTED RESONANT FREQUENCY fo (fa = 2 mm)
. T . . ,AND THE VALUES OF THE DISPERSIONCORRECTIONFACTORS A; AND A,
the sapphire disc is very thin compared to the resonator helghfV USED ON A COARSERGRID (A=) AND THE FINER GRID (A=/10)
(L/t == 218), the structure was covered with a mesh, which
was uniform in thep-direction and nonuniform in the-direc- Az AT N fo Al Az
tion. In the computations, it was assumed that the region close [mm] | Az | 1000 | [GHz]
to the pla}nfar mirror is covered with a i!cOQensgr mesh than. 0;2 ig igg }82:2(5)3‘31 1.017(;34405 1'0015171073
the remaining part of the structure. This implies that the dis- 024 | 12 | 241 | 108.5742 | 1.012478721 | 1.001151028
persion properties for each mesh region are different. In order 020 | 14 | 325 ;| 108.5626 | 1.008642755 | 1.000794355
to use the di§persion correction algorithm, ir_w each mesh region 8:;2 i; igﬁ igg:gigi i:ggg’g?ggg? i:%gggggg
we used a different factad [cf. (20)]. To eliminate the reflec- 0.15 18 | 675 | 108.5477 | 1.004861916 | 1.000442017
tion caused by mesh density mismatch, we placed the boundary 0-14 | 20 | 752 | 108.5459 | 1.004233422 | 1.000383286
between the meshes at the plane where the magnitude of th 0'(;2 iz 874 }822?2.‘, 1003096832 | 1000276081
E. component is minimal. Since the location of this plane is :
not knowna priori, we used the approximate field distribution
obtained from the Galerkin method to determine theoor- we had to resort to parallel computing to obtain results in an ac-
dinate for interfacing the meshes. The resonant frequenciesceptable time [17].
the quasdEM; o 52 mode were computed for different dis- To show the influence of gridding and the dispersion correc-
tances between the disc and bottom planar mirror. They wéien factors, we ran the convergence teststfor= 2 mm. The
then compared to the values of resonant frequencies measuredstlts are given in Table I. With modest computer resources, we
the Texas Center for Superconductivity, University of Houstomere able to easily solve problems with 874 350 unknowns. Itis
Houston, TX. The results are shown in Fig. 2. seen that the calculations converge uniformly from above and, as
One may note that computed results exceed the measuhe- grid is refined, the dispersion correction factors tend to one.
ments by less than 0.1%. The results shown in this figure wdBased on the results calculated for several grids, we determined
computed with the grid\z = 0.16 mm = A/17. (In the re- that the order of convergence of the presented algorithm with
gion close to the planar mirror, we applied a finer giid; = a dispersion correction equals approximately 2.6. This means
0.1 - Az).) For these grids, the problem size equal¥d= that the convergence is faster than in the standard FDFD method
474 390. The computations were carried out in MATLAB onsince, if we switch off the dispersion correction, the order of the
a 1-GHz Pentium 1l computer. The ISIL algorithm with themethod becomes 2.0, as predicted by the general theory and ob-
starting vector calculated via the Galerkin method required orgegrved in practice. We used the computed convergence order in
approximately 25 min to converge. It proved to be much motbe Richardson extrapolation algorithm to determine the limit as
efficient than the Arnoldi method with polynomial precondi-\/Az — oo. This extrapolated value is shown in the last row in
tioning that we used in the past [16]. With the latter algorithnTable |. The first row of this table shows the results calculated
for A; = Ay = 1, i.e., without a dispersion correction. It can

easily be verified that, for the coarsest ghigA > = 10, the dis-
IThe length of the resonator was computed using analytical formulas for the Y gklﬂA7

homogeneous (empty) resonator and values of measured resonant frequem@mn correction reduces the elrror relative to the extrapolated
for a few modes in that resonator. result from—1.549% to 0.068%, i.e., by a factor of 23.
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VI. CONCLUSIONS [11] A. L. Cullen and P. K. Yu, “Complex source-point theory of the elec-
tromagnetic open resonator,” Rroc. Royal Soc. Lond. A, Math. Phys.

In this paper, we have shown that rotationally symmetric in- s, vol. 366, 1979, pp. 155-171.
homogeneously loaded open hemispherical resonators could B&l W. K. Gwarek, T. Morawski, and C. Mroczkowski, “Application of the

accurately and efficiently modeled using the FDFD method. A

FD-TD method to the analysis of circuits described by the two-dimen-
sional vector wave equationEEE Trans. Microwave Theory Tech., vol.

very high accuracy of computations was achieved by coupling 41, pp. 311-317, Feb. 1993.
a conventional FDFD approach with sophisticated numericall3] T. Weiland, “Time domain electromagnetic field computation with finite

techniques, including conformal analysis of boundaries or the

difference methods/[ht. J. Numer. Modeling, vol. 9, no. 4, pp. 295-319,
July—-Aug. 1996.

algorithm for correcting the error due to numerical dispersion[14] P. Przybyszewski, “Fast finite difference numerical techniques for the
Resonant frequencies of the desired high-order modes were time and frequency domain solution of electromagnetic problems,”

found by solving a very large-scale symmetric eigenproblem.

Ph.D. dissertation, Dept. Electron., Telecommun., Informatics, Tech.
Univ. Gdansk, Gdansk, Poland, 2001.

In order to reduce computational cost associated with solvingis] M. Rewierski and M. Mrozowski, “An iterative algorithm for reducing
this problem, we proposed a strategysaifective computation dispersion error on Yee's mesh in cylindrical coordinatéEEE Mi-

of a single desired mode based on the: 1) approximate solutiqrfe]

with

crowave Guided Wave Lett., vol. 10, pp. 353-355, Sept. 2000.

. Lt A. Cwikta, J. Mielewski, M. Mrozowski, and J. Wosik, “Accurate full
the Galerkin method and 2) application of the ISIL wave analysis of open hemispherical resonators loaded with dielectric

iterative method. Excellent agreement of the computed results layers,” in|EEE MTT-S Int. Microwave Symp. Dig., vol. 3, 1999, pp.

with experimental data and short solution time were obtained.

1265-1268.
[17] M. Rewierski and M. Mrozowski, “Iterative application of boundary
conditions in the parallel implementation of the FDFD methd&EE
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